vinstall Documentation
Release a0.1

rbistolfi

Jul 15, 2017

Contents

1 Overview 3
1.1 The Application ObJeCt o o i e e e e e e e e e e e 4
1.2 Model Objects o e e e e e e e e e e e e e 4
1.3 Viewobjects e 5
1.4 Registering NeW VIEWS v o v vttt it e e e e e e e e e e 5

vinstall Documentation, Release a0.1

Vinstall is an application toolkit for the Vector installer, implementing a MVCish framework.

Contents 1

vinstall Documentation, Release a0.1

2 Contents

CHAPTER 1

Overview

An application written using vinstall usually consists in just a set of controller classes, implementing a required
interface. Each controller class represent a state in the application and they have the following responsibilities:

* Defining the next controller class

* Defining the previous controller class

* Defining the information that will be rendered in the screen
* Reacting to user input

The first two are implemented by defining a next () and a previous () methods, returning the classes representing
the next and the previous state of the application. They usually will contain some simple logic, because sometimes the
next step will depend on the state of the application or the environment. In the same way, returning to a previous state of
the application could require some cleaning up from your side. The render () method is used to present information
to the user. It should return a Render instance. A Render object is created with at least three arguments. The first
isa str () object used for the title of this stage of your app. The second one is also a str () object, representing
a introductory text that will be shown right next to the title. Finally, one or more model objects. Model objects are
not very special. The only property they have is that a view has been registered for them. We provide a set of model
objects representing common form elements in the vinstall.core.model module. You can also create your own models
and register views for them (more on this later). Finally, controllers can react to user input in two ways, by defining
a command () method and/or a process () method. Both methods take as many arguments as model objects you
passed with the render () method. The process () method is called inmediatelly after user requests the next state
(typically when she clicks “next”) and before the next stage is shown. The command () method is scheduled for later
execution, and it will be called after all the controller classes have been processed. So, a controller class looks like
this:

from vinstall.core.render import Render
import wvinstall.core.model as model

class MyController (object) :
""rnaA controller

mmn

def render (self):

vinstall Documentation, Release a0.1

"""A method returning a Render instance.

The first to args of the Render's constructor are a title

and an intro text. The rest of the arguments are model objects
The BooleanOption will be rendered as a checkbox

mnn

return Render ("Hello world", "This is the intro",
model.BooleanOption ("This is a boolean option")

def next (self):
""'Return the next controller class. If this returns None, we
assume it is the end of the application.

mmn

return None

def previous(self):
"""Return the previous controller class.

mmn

return TheFirstController

def command(self, boolean):
"""The signature matches the number of model objects in the
render method. This will be executed later.

mnn

if boolean:
myapp .do_something ()

The Application object

Finally, you just need to start you app by creating an Application instance, passing the first controller class (first
as in the one representing the initial state of your app) and the name of a view module as a string. There are two views
defined for the provided model objects, “urwid” and “gtk”. You can start the app using the run () method:

app = Application(MyFirstController, "urwid")
app.run()

This should be all you need to know for writting a simple app. Below there is a small overview of the other objects
used in the application, so you can understand better whats going on.

Model objects

Model objects do not need special behavior. Usually, it will be just an object from your domain, or business layer.
Ocasionally, your model objects will need to implement special behavior, such as observable objects or persistent
objects. In general, the model type is only important for finding a registered view for it, so you don’t really need to
worry about it.

4 Chapter 1. Overview

vinstall Documentation, Release a0.1

View objects

View objects are the graphical representation of your model objects. We provide a simple class decorator for registering
views against model types. View objects need to implement a required Interface defined in the core.view.View class.
This class is only a reference and you don’t need to subclass it for creating a View type.

Registering new views

New views can be registered using the renders () class decorator:

@renders (my.model.Class)
class MyModelClassView (object) :
"""A view for MyModelClass

mmn

For more information, check out the module index.
* genindex
¢ modindex

e search

1.3. View objects 5

	Overview
	The Application object
	Model objects
	View objects
	Registering new views

